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Abstract

It has been conjectured that multilingual mod-
els process information in low-resource lan-
guages in an English state of mind since En-
glish takes up a large proportion of the training
corpus. Recent progress in language model
multilingualism provides more evidence for
this hypothesis. We ask a further question:
What if the model is trained on more than
one high-resource language? By studying
language models trained mostly on Chinese
and English with an interpretability technique
called Sparse Autoencoders, we manage to
identify a three-stage process of how mod-
els think in these two languages. The model
first “detokenize” inputs and both languages
are aligned. The representation of these two
languages then diverges and processed indepen-
dently in a “conceptual stage” and is aligned
again in the “retokenization stage”. We name
this the Intrinsic Multilingualism. We em-
pirically test our hypothesis by intervening
the model internal with Sparse Autoencoders
trained on another language and find that the
“conceptual stage” is crucial for the model to
think in different languages. We also showcase
a number of features detecting intriguing lin-
gual and cultural bias in Chinese and English.

1 Introduction

Understanding the multilingual ability of language
models is an important research problem. As
large language models (LLMs) continue to advance
and exhibit unprecedented societal impact, this be-
comes a more urgent issue with regard to both lan-
guage model interpretability and AI fairness.

A number of language models are found to be
able to achieve considerable performance in lan-
guages with a small portion of training data (De-
vlin et al., 2019; Conneau et al., 2020; Wendler
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Transferred Multilingualism (TM)
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Figure 1: Two types of multilingual abilities. When
a model is trained on two high-resource languages, it
exhibits Intrinsic Multilingualism.

et al., 2024). Existing literature on this problem ob-
serves the phenomenon of “pivot language” in these
English-dominated LLMs, where the model inter-
nally translates the prompt to its pivot language and
then translates the processed results back for gener-
ation (Shi et al., 2022; Ahuja et al., 2023; Wendler
et al., 2024; Zhao et al., 2024; Tang et al., 2024).
In this work, we name this type of lingual ability
inherited from another language after transferred
multilingualism.

In recent years, the rise of a family of Chinese
LLMs (Bai et al., 2023; Yang et al., 2023; Sun et al.,
2024) provides researchers with a new possible
testbed for multilingual ability. It raises a natural
research question: what will be the mechanistic
story of LLM multilingualism if another language
appears as much as English? We find that English
and Chinese are found to be of comparable sta-
tus and exhibit a clear three-phase mechanistic
structure. We call it intrinsic multilingualism.

We utilize Sparse Autoencoders (SAEs) to ana-
lyze an intrinsic zh-en Qwen-1.5-1.8B (Bai et al.,



2023) and a transferred Phi-2 (Gunasekar et al.,
2023) for their ability on (Simplified) Chinese and
English. We conduct a series of exploration of the
inner state of multilingual LLMs from both macro-
scopic and microscopic lens. These approaches
lead to the same conclusion that Transferred and
Intrinsic multilingual ability are mechanistically
distinct.

We make an analogy of these two modes of
multilingualism to rail tracks in Figure 1. When
both languages are trained on equally, their inner
processing features three stages: Detokenization,
Conceptual Stage, and Retokenization. These
two languages align at the first and the last stage
and diverge at the Conceptual Stage. When English
dominates, our SAE analysis leads to a conlusion
agreeing with existing findings i.e. the model actu-
ally thinks in English (Wendler et al., 2024).

The main contributions of this paper can be sum-
marized as follows:

• To the best of our knowledge, we are the first
to investigate the inner mechanism of LLMs
dominated by more than one language.

• Through the analysis of SAEs’ features, our
experiments make an extension to existing
findings in multilingualism.

• We propose a systematic method using SAE
to explore LLMs’ abilities in different distri-
butions. We believe this can be generalized to
more scenarios e.g. multimodal models.

2 Conceptual and Empirical
Preliminaries

2.1 Dataset
Language Choice Our goal is to probe the core
mechanisms of Intrinsic Multilingualism and Trans-
ferred Multilingualism, which requires compar-
ing high-resource languages and high- and low-
resource languages. Additionally, we need to se-
lect languages from different language families to
avoid potential mutual interference, as mentioned
in (Wendler et al., 2024). We thus choose English
and Chinese as our primary experimental languages
due to their significant differences and the avail-
ability of ZH/EN-based LLMs. We also included
Arabic as a comparative low-resource language for
Intrinsic Multilingualism experiments.

Language Datasets For our experiments, we
selected ChineseWebText (Chen et al., 2023),

Pile (Gao et al., 2020), and Arabic-words-
dataset (Aloui et al., 2024) as the source datasets
for Chinese, English, and Arabic, respectively.

For efficiency, we selected 1 billion tokens from
each dataset as our ZH, EN, and ARA datasets. Ad-
ditionally, we created the MIX dataset by selecting
1 billion tokens, evenly distributed between Chi-
nese and English data. Further information about
datasets can be found in Appendix A

2.2 Language Models

We choose Qwen-1.5-1.8B (Bai et al., 2023) as a
testbed of Intrinsic Multilingualism. Its training
dataset is multilingual, including both Chinese and
English as high-resource languages. This model
has 24 layers, 16 attention heads, an embedding di-
mension of 2048, and a vocabulary size of 152,000
tokens.

For our analysis of Transferred Multilingualism,
we selected Phi-2 (Gunasekar et al., 2023) because
its training corpus is primarily English, making
English the only high-resource language. Phi-2
has 2.7 billion parameters and 32 layers with an
embedding dimension of 2560.

2.3 Sparse Autoencoders

Though a small fraction of MLP neurons ex-
hibit monosemanticity i.e. firing in a human-
understandable pattern (Tang et al., 2024), recent
progress in mechanistic interpretability shows that
they may not be the right primitives to work with.
This is due to both the neuron basis being privi-
leged (Elhage et al., 2023) and the superposition
hypothesis (Elhage et al., 2022b).

To this end, we follow Bricken et al. (2023)
to decompose model activation on a more inter-
pretable, overcomplete basis with Sparse Autoen-
coders (SAEs). Existing literature suggests SAEs
are able to extract a lot of interpretable features
from models across model sizes (Templeton et al.,
2024) and tasks (He et al., 2024; Gandelsman et al.,
2024).

Our SAEs have only one hidden dimension
larger than the input dimension (i.e. F > D),
with the training objective of reconstructing any
given model activation and an L1 penalty on its
hidden layer to incentivize sparsity. An SAE can
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Figure 2: English / Chinese-
specific features in each layer.
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Figure 3: Features firing in
both languages.
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Figure 4: Features firing at
English / Chinese tokens.(without
specificity)

be formulated as follows:

fi(x) = ReLU(Wenc
i,· · x+ benci ),

x̂ =

F∑
i=1

fi(x) ·Wdec
·,i ,

Where x ∈ RD is the hidden activation decom-
posed with F features. Wenc ∈ RF×D and
Wdec ∈ RD×F are the encoder and decoder of
an SAE. x is linearly mapped into the feature space
by the encoder and a bias benc, followed by a ReLU
to ensure f(x) (i.e. feature activations) being non-
negative.

SAEs are trained to reconstruct the original ac-
tivation with a linear combination of the decoder
columns (i.e. features), determined by f(x). We
also set an L1 sparsity constraint on f(x) to obtain
a sparse coding of each activation.

Concretely, we train SAEs on language models
in Chinese (ZH), English (EN), and a mix of both
(MIX) in the residual stream after each Transformer
block. We refer readers for more training details of
our SAEs to Appendix B.

Intuitively, SAEs trained solely on one language
only extract the model’s features for this specific
language. We seek to study the commonality and
divergence of these two families of SAEs to mecha-
nistically understand LLM multilingualism.

2.4 Transferred Multilingualism
How does it work internally when processing dif-
ferent languages in a model mainly trained on En-
glish? We validate existing findings (Shi et al.,
2022; Wendler et al., 2024; Tang et al., 2024)
through the SAE lens by analyzing features in Phi-
2 MIX SAE. Our results suggest furthur evidence
that English-dominated LLMs process other lan-
guages in English.

We are interested in the number of SAE features
that activate in each language. Following Tang et al.
(2024), we use the LAPE (Language Activation
Probability Entropy) metric for language-specific
features. By calculating the probability of a feature
being activated across different languages, we can
determine the entropy of the features, indicating
their language specificity. In this experiment, we
use 512 data samples from ChineseWebText and
Pile to test feature’s specificity.

The main takeaways of our validating experi-
ment are summarized as follows:

• Language-specific features appear at early
and late layers (Figure 2): The number of
both English-specific and Chinese-specific
features (i.e. only firing in English / Chinese
corpus) exhibits a U-shaped trend across the
24 layers. This is consistent with neuron-level
findings (Tang et al., 2024).

• Multilingual features emerge at early-
middle layers (Figure 3: The number of
multilingual features increases from the early
layers to the middle layers, indicating where
Transferred Multilingualism occurs and ex-
plaining the decrease in language-specific fea-
tures.

• English related feature number far exceeds
Chinese’s 4) The number of features firing at
EN tokens is much higher in all layers. More-
over, the ZH bar’s shape is similar in Figure 3
and Figure 4), indicating that features firing
at ZH tokens also fire at EN tokens, echoing
with pivot language in TM.

One advantage of understanding Transferred
Multilingualism is that the SAE feature basis of-



fers a better interpretability primitive. One prob-
lem with the neuron approach is that here is no
guarantee that these neurons are interpretable (El-
hage et al., 2022b, 2023). This poses a concern
on whether the neuron approach may provide an
epistemic basis for analysis. Wendler et al. (2024)
utilize a tool called the logit lens, by directly send-
ing the intermediate residual stream activation to
the model unembedding. This method may provide
insights into the model’s internal workings. How-
ever, it usually does not work at early layers since
they are too far away from the unembedding and
may lead to deceptive conclusions.

3 Understanding Intrinsic
Multilingualism

Different from Transferred Multilingualism, when
another high-resource language comes into play,
the inner mechanism of multilingualism will
change thoroughly.

3.1 Conceptual Model
We first forward our conjectural conceptual model
of Intrinsic Multilingualism. Intrinsic Multilingual-
ism mainly consists of three stages:

1. Detokenization (Layer 1-5): English and
Chinese features are aligned, and each lan-
guage’s feature contains the other’s linguistic
information.

2. Conceptual Stage (Layer 6-15): English and
Chinese features are separated, and the model
’thinks’ in different languages.

3. Retokenization (Layer 16-24): English and
Chinese features align again, allowing mutual
representation.

This model is inspired by existing findings by El-
hage et al. (2022a) and Ge et al. (2024c), where
they find that neurons/features are at low-level in
early layers, become more abstract in middle layers
and are related to next-token prediction at late lay-
ers. We inherit this hypothesis and provide further
supporting evidence of language models’ internal
hierarchical structure.

3.2 Experiments
Macro Analysis: SAE substitution SAE decom-
poses the model’s features by learning to recon-
struct the model’s activation values. We use the re-
construction error between the SAE’s reconstructed

Figure 5: Concept diagram for doing SAE substitution
on IM model.

activation and the original activation values to quan-
titatively evaluate how well an SAE captures the
model’s features. This experiment is called SAE
substitution.

Assuming this premise, we perform SAE substi-
tution with different input data. For example, if the
input data is in English and we conduct ZH SAE
substitution, the reconstruction cross-entropy loss
(ce loss) indicates how representative the model’s
Chinese-induced features are given English input,
as shown in Figure 5.

We analyze Qwen-1.5’s SAE substitution results.
Figure 6’s green bar shows the performance of the
MIX SAE. We can see that it achieves near-perfect
performance in all input settings, validating our
premise that it can demonstrate the multilingual
model’s full competence. Additionally, the results
of EN and ZH substitution in mutual languages
both form U-shaped curves. This symmetry reveals
that Qwen-1.5’s abilities in English and Chinese
are more balanced and independent. The consistent
U-shape in EN and ZH SAE substitution indicates
that the features of one language contain informa-
tion about the other language in the early and final
layers. However, the middle layers’ features are
more separated from the other languages, leading
to comparatively poorer reconstruction results. To
demonstrate the unique pattern shown by Intrinsic
Multilingualism, we also carry out SAE substitu-
tion on the Arabic dataset, the result and analysis
are shown in Appendix C.

This experiment provides initial proof of Intrin-
sic Multilingualism’s inner mechanism, implying
the potential drifting in the middle layers.

Micro Analysis: Activation Similarity To gain
a more detailed understanding of the model’s in-
ner mechanism and the relationship between ZH
and EN features, we will visualize the evolution of
activations after substitution.
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Figure 6: Qwen1.5’s SAE substitution result. The for-
mula of “Reconstructed Cross-Entropy Ratio” can be
found in Appendix B
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Original Activation

Substituted Activation

Layer 0 t-SNE Layer 1 t-SNE Layer 2 t-SNE Layer 3 t-SNE Layer 4 t-SNE Layer 5 t-SNE

Layer 6 t-SNE Layer 7 t-SNE Layer 8 t-SNE Layer 9 t-SNE Layer 10 t-SNE Layer 11 t-SNE
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Figure 7: All layers’ activation pattern after substituting
Layer 3’s activation value with ZH SAE’s output. Red
dots denote the original layers’ activation, while blue
dots denote the substituted activation.

When the input is English and we substitute the
kth activation with the ZH SAE’s reconstructed
activation value, we record all the following acti-
vations and compare them with the original activa-
tions. Figure 7 and Figure 8 show the results of the
3rd and 8th layers being substituted.

The discrepancy between these two figures lies
in whether the substituted activation gradually di-
verges from the original activation.

From Figure 9 we can understand the relation-
ship between the substitution’s position and the
final layer’s activation’s clustering result. We gain
two key insights from this experimentation: (i) The
divergence of activation starts from the 18th to 20th

layers. (ii) If the substitution occurs in the middle
layers (5th to 14th), the divergence will manifest
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Figure 8: All layers’ activation pattern after substituting
Layer 3’s activation value with ZH SAE’s output. Red
dots denote the original layers’ activation, while blue
dots denote the substituted activation.
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Figure 9: t-SNE results of different layers’ substitution,
indicating different stages of model

in the final layers. (iii) When the substitution oc-
curs in the early or final layers, the original and
reconstructed activations are very similar.

The full result of this experiment is presented
in Appendix D. This result echoes the U-shape in
macro analysis in that divergence caused by sub-
stitution is equivalent to the low ce score in SAE
substitution.

Furthermore, this experiment validates our con-
ceptual model, proving that the features in the early
and final layers are mutually aligned while sepa-
rated in the middle layers.

Finally, we will directly demonstrate the exis-
tence of the main Conceptual Stage within Intrin-
sic Multilingualism.

Causal Analysis: Substitution Inference The
previous analysis focused on the intermediate ac-
tivations within the model. Now, we aim to un-
derstand how different features affect the model’s
downstream effects. We use a substitution infer-
ence experiment. As shown in Figure 10, we sub-
stitute the intermediate activation value of a certain
layer with the reconstructed activation value from



Figure 10: Demonstration of Causal Analysis. The
setting is using EN input and substitute intermediate
activation value with ZH SAE.

SAE. Then, we check the difference in the <next
token> prediction of the model before and after
substitution.

As shown in Table 1, when the substitution hap-
pens in early or final layers, the <next token> pre-
diction remains English words and is close to the
original prediction. However, if we substitute the
middle layers with reconstructed activation, the fi-
nal prediction will be in Chinese. This Chinese
prediction can either fit the context or be a trans-
lation of the original next-token prediction. These
results highlight the role of the model’s middle
layers.

Besides the qualitative results, we conduct a
quantitative experiment to verify the previous con-
clusion about the uniqueness of middle stages us-
ing cloze tests (Nostalgebraist, 2020). We create
a small-batch dataset of 100 samples in both lan-
guages and calculate whether the model’s predic-
tion after SAE substitution matches the correct an-
swer or its translative pairs in ZH/EN.

Figure 11 shows the result of using EN input
and ZH SAE as substitution, validating the influ-
ence that middle layers have on the final prediction.
Thus we can conclude that when two high-resource
languages appear within LLM, the model itself will
evolve into two separated conceptual spaces, en-
abling the model to ’think’ in different languages.
And we can use different language feature substitu-
tions to change the language that the model ’thinks
with’, supporting the clustering of features in mid-
dle layers.

4 Applicative Scenarios

The uniqueness of SAE lies in its ability to ex-
tract interpretable features from neurons. Thus,
it provides a plausible method to probe different
conceptual spaces within Intrinsic Multilingualism.
We focus on features that capture the specialties of

2The input prompt in English is : ......(few shot) A “__”
is used to read stories. Answer: “. And the input prompt in
Chinese is : ......(few shot) “_”是一种通过物质或空间传递
能量的扰动。答案：“.

ZH and EN, divided into syntactic and semantic
features. We utilize the tool (Ge et al., 2024b) to
visualize the features of SAE.

4.1 Syntactic Results

English Compared to Chinese, English’s verb
tense and attributive clauses are both important and
representative syntactic structures.

First, we analyze the verb tense for both EN SAE
and ZH SAE. As shown in Figure 12, EN SAEs
have features detecting different types of verb in-
flection with specificity. Since our custom input
contains two tenses, these features only activate for
one of them across all samples. On the other hand,
ZH SAEs don’t have similar specific features. We
have shown the ZH features with the best specialty,
but they still attend to other tenses.

Next, we focus on English’s attributive clauses,
mainly on relative pronouns for clarity. As shown
in Figure 13, EN features have better specificity for
these pronouns, while ZH features attend to other
components in sentences. Layer-8’s features attend
to different relative pronouns, and features in later
layers become more fine-grained. One especially
interesting feature is L13-en-13971, which focuses
on that’s position in attributive clauses, even if it’s
omitted, showing the functionality of features is far
beyond character-level matching.

Chinese For distinction from English and bet-
ter comprehension, we select “quantifiers” as Chi-
nese’s special syntactic structure. Most objects
have their special quantifier in Chinese, while only
a special set has them in English, like a cup of tea
or a piece of paper.

As shown in Figure 14, ZH features are very spe-
cific to quantifiers without obvious activation for
other components. Although EN features could ac-
tivate towards different quantifiers, their activation
is more dispersed, showing a gap in recognition.

4.2 Semantic Results

Since features are the “minimal unit of compre-
hension”, we decided to test feature understanding
about festivals because it is cultural-related and has
clear-defined names.

As shown in Figure 15, ZH features focus more
on Chinese-related festivals like Spring Festival
and Mid-autumn Festival, while EN features attend
more to Western festivals like Christmas and Hal-
loween. This disparity provides a clear view of the
separate conceptual spaces within the multilingual
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Figure 11: Result of substitution’s pre-
diction being the answer or the answer’s
translative pair.1

Layer Input EN Input ZH
EN SAE ZH SAE ZH SAE EN SAE

0 book book 书 (book) 故事 (story)
1 book book 书 (book) 书 (book)
2 book book 书 (book) 书 (book)
3 book book 书 (book) 故事 (story)
4 book 书 (book) 书 (book) 文字 (writing)
5 book 书 (book) 书 (book) 文字 (writing)
6 story 书 (book) 书 (book) story
7 book 书 (book) 书 (book) 故事 (story)
8 book 书 (book) 故事 (story) story
...

...
...

...
...

14 story 阅读 (read) 故事 (story) story
15 book story 读 (read) story
16 book book 书 (book) 故事 (story)
17 book book 书 (book) 书 (book)
...

...
...

...
...

21 book book 书 (book) 书 (book)
22 book book 读 (read) (blank)
23 book a 书 (book) 的 (of)

Table 1: Causal results of a piece of few-shot cloze task generated
by Qwen1.5-1.8B. The corresponding English translation of each
Chinese token is shown in grey within the brackets next to it.2

Present tenseL8-en-18513

Past tense

Future tense

L13-en-14008

L13-en-29375

L8-zh-6102

L13-zh-5661

L13-zh-5661

Figure 12: ZH and EN features attending to verb’s dif-
ferent tenses

Multiple relative pronouns

‘That’ extractor

Multiple relative pronouns

‘Where’ extractor

L8-en-11095

L13-zh-27939 L13-zh-10012

L13-en-13971

L8-en-4866

L13-en-30889

Figure 13: ZH and EN features attending to attributive
clause’s relative pronoun

Universal Quantifier

Universal Quantifier L13-en-18885L13-zh-10568

L8-en-26590L8-zh-14871

Figure 14: ZH and EN features attending to different
quantifiers

Chinese Festivals

English Festivals

L19-zh-15484

L19-en-26003

(Activated for Spring Festival)

(Activated for Lantern Festival)

(Activated for Qingming Festival)

(Activated for Dragon Boat Festival)

(Activated for Mid-Autumn Festival)

(No Specific Activation)

(No Specific Activation)

(No Specific Activation)

Figure 15: Semantic difference between SAEs’ features.



model and opens up more opportunities for further
investigation.

5 Discussion

Intrinsic Multilingualism and Transferred Multilin-
gualism has great potential in discovering and rem-
edying multilingual bias researches/ But currently,
we can only conduct case studies and qualitative
research into the features learned by ZH and EN
SAEs for the application part because we cannot
train SAEs on larger models that showcase obvious
language bias.

However, we believe this research approach has
greater potential. Since ZH SAE and EN SAE
provide a way to examine the model’s conceptual
space in different languages separately, we can ex-
plore certain multilingual phenomena more deeply
and with finer granularity instead of testing bias
simply by prompts.

Current multilingual benchmarks don’t necessar-
ily focus on bias detection: they are just common
benchmarks written in other languages. Even if
an LLM performs well on these benchmarks, it
could be due to the "pivot language"’s outstanding
ability (Wendler et al., 2024).

With the help of SAEs, we can study language
bias within LLMs using SAEs and identify the
source of these biases by examining the cultural
or language-related features within a specific SAE.
If a language’s SAE doesn’t meet these criteria,
we can infer that it may exhibit a certain type of
bias in generation. We believe SAEs provide us
with a thorough and systematic method to evaluate
the model’s inner mechanisms and help us recog-
nize hidden patterns that are not clearly shown in
prompt-generation tests.

Furthermore, we think SAEs can also help allevi-
ate certain unwanted behaviors of LLMs and enable
us to steer them towards specific needs. Anthropic
has shown how to steer LLM features in (Temple-
ton et al., 2024). In a multilingual setting, we can
discover and use more language-specific features
to achieve more versatile operations and modifica-
tions on the model. This enables us to post-process
potential multilingual biases within LLMs.

Future work can focus on the following direc-
tions: (i) Train separate SAEs on larger models that
perform well on multilingual benchmarks but ex-
hibit pivot language biases. SAEs can explain the
origin of language bias. (ii) Study how to steer fea-
tures to mitigate language bias within multilingual

models. Further investigate the features’ effects
on different language performances. (iii) Set up a
benchmark at the feature level to evaluate multilin-
gual LLMs’ overall multilingual ability, paying at-
tention to the balance between different languages.
Provide suggestions for data composition during
the pretraining stage.

6 Related Work

Mechanistic Interpretability Mechanistic inter-
pretability aims to reverse-engineer neural net-
works to understand their mechanisms. Cammarata
et al. (2020) worked on the mechanistic inter-
pretability of vision models, specifically Incep-
tionV1. Due to superposition (Elhage et al.,
2022b) and the polysemanticity of neurons, dic-
tionary learning (Faruqui et al. (2015); Arora et al.
(2018); Bricken et al. (2023)), previously applied
to word embeddings, leverages the sparse autoen-
coder (SAE) (Huben et al., 2024) to discover linear
combinations of features.

Similarity Analysis Methods Previous works
have primarily applied static analysis to compare
activations between different languages. Tech-
niques such as Singular Value Decomposition
(SVD) (Raghu et al., 2017), Canonical Correla-
tion Analysis (CCA) (Singh et al., 2019), and
PARAFAC2 (Zhao et al., 2023) have been used.

Multilingual LMs’ Hypothesis of Representa-
tions As shown by Pires et al. (2019) and Singh
et al. (2019), representations consist of a language-
specific component, which identifies the language
of the sentence, and a language-neutral compo-
nent, which captures the sentence’s meaning in-
dependently of the language. Many studies, such
as Liang et al. (2021) and Choenni and Shutova
(2020), follow this hypothesis using probing meth-
ods. Choenni and Shutova (2020) specifically fo-
cused on encoder-based LMs like mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020), and
LASER (Artetxe and Schwenk, 2019).

From the perspective of neuron architec-
ture, Foroutan et al. (2022) applied the lottery ticket
hypothesis to identify subnetworks for evaluating
transferability between languages. They concluded
that multilingual models contain both language-
neutral and language-specific components, with the
language-neutral components being more promi-
nent in cross-lingual transfer performance.



Pivot Language Recent research has used pivot
languages, such as English, to improve the capa-
bilities of large language models (mainly GPT-3.5-
turbo) (Ahuja et al., 2023). Wendler et al. (2024)
used the logit lens (Nostalgebraist, 2020) to ar-
gue that multilingual models conceptually employ
English-biased internal lingua franca in a semantic
sense.

7 Conclusion

From macro analysis experiment (SAE substitu-
tion), we find that in the model Qwen1.5-1.8B, the
reconstruction performance of a different language
would get down in the middle layers and forms a
U-shape curve in total. From micro analysis exper-
iment (Activation Similarity), we gain the insight
that only the substitution in the middle layers will
cause an obvious final divergence between original
activation and substitution activation. From causal
analysis experiment (Substitution Inference), the
change of <next token> prediction also take place
in the middle layers. Based on all these 3 experi-
ments’ results, we propose the conceptual model
that text generation for multilingual model is di-
vided into 3 stages: detokenization, conceptual
stage and retokenization. For Transferred Multi-
lingualismmodel, the conceptual stages between
different languages are partly separated. Input in
different languages would go on different track

Limitations

Though we offer new insight of model multilingual-
ism, we only study one model and one pair of lan-
guages for Transferred Multilingualism and Intrin-
sic Multilingualism, respectively, which restricts
the scope and generality of our methods. Moreover,
our narrow focus on SAEs trained in the residual
streams suggest more space for improvement. For
example, one can also decompose the activation
of each module writing into the residual stream to
understand the function of each individual module
and also how these features form circuits so that
one can understand the information flow inside of
models, which is not included in this work.
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A Dataset Introduction

ChineseWebText (Chen et al., 2023) is a large-scale
dataset containing a wide range of Chinese texts
collected from the web. It includes diverse content
types, such as news articles and blogs. This diver-
sity ensures that our model is exposed to various
linguistic contexts and styles, thus enabling SAEs
to extract more features and ensure the complete-
ness of our following experiments.

Pile (Gao et al., 2020) is an extensive English
language dataset composed of multiple smaller
datasets covering a broad spectrum of domains.
Using the Pile allows us to train our model on a
rich and varied dataset, improving its performance
and generalization across different types of English
language data.

B Sparse Autoencoder Training

We trained SAE for residual stream of all layers in
Qwen1.5-1.8B (24 layers) and Phi-2 (32 layers).

B.1 Architecture
We expand the dimension of the model’s interme-
diate activations by 16, which means that the shape
of hidden units in the SAE trained for Qwen1.5-
1.8B is 16 × 2048 and 16 × 2560 for Phi-2. The
forward process can be illustrated by

nx =
√
d/||x||2

z = ReLU (Wenc (x · nx) + benc)

x̂ = (Wdecz)/nx

(1)

with Wenc ∈ Rn×d, benc ∈ Rn, Wdec ∈ Rd×n (Gao
et al., 2024). The x̂ is the reconstructed activations.
The loss function is L = ||x−x̂||22+λ||z||1, with λ
refer to the L1 coefficient that controls the sparsity
punishment.

B.2 Training Setting
Here we utilize ghost gradients to avoid “dead fea-
tures”, which means that the neurons are always
in the state of deactivation. We use Adam as our
optimizer and set 2.5e-5 as the max learning rate.
Besides, the context size (sequence length) input
to the model is set to 256 and λ (L1 coefficient)
is set to 5e-4 which show a good balance between
sparsity and reconstruction. Last, the batch size is
set to 2048.

B.3 Statistics of SAE
Sparse autoencoders are not perfect feature extrac-
tors. In fact, there are two kinds of metrics to

Layer L0 Explained Variance CE Score CE Loss
0 46.37 88.98% 0.99 2.6
1 42.11 86.32% 0.99 2.61
2 42.47 84.28% 0.99 2.66
3 48.77 81.28% 0.98 2.7
4 63.21 79.09% 0.97 2.71
5 76.91 76.53% 0.99 2.71
6 82.87 84.23% 0.98 2.72
7 88.32 76.53% 0.98 2.73
8 106.36 73.51% 0.98 2.75
9 117.88 68.75% 0.97 2.81
10 121.01 68.28% 0.98 2.82
11 121.18 67.25% 0.97 2.82
12 116.87 71.11% 0.97 2.83
13 116.23 68.6% 0.97 2.88
14 109.98 69.61% 0.97 2.88
15 104.86 70.45% 0.96 2.89
16 102.78 70.94% 0.97 2.88
17 99.69 71.0% 0.96 2.91
18 97.0 71.78% 0.96 2.94
19 95.57 71.13% 0.95 2.98
20 96.79 70.7% 0.95 3.04
21 101.02 68.68% 0.95 3.12
22 104.12 66.39% 0.95 3.32
23 101.81 76.42% 0.88 3.66

Table 2: EN SAE training statistics on Qwen1.5-1.8B

evaluate the performance of SAE. First, we use
EV and recostructed cross− entropy ratio
to evaluate if the SAE could reconstruct a good x̂.

EV = 1− ||x̂− x||22
σ2(x)

ratio =
Lrecons − Lablate

Loriginal − Lablate

(2)

with Lrecons, Loriginal and Lablate representing the
reconstruction CE loss (calculated by using substi-
tution of SAE), the original CE loss and the ablated
CE loss (calculated by setting the activation to be
zero) (Ge et al., 2024a).Table 2, Table 3 and Ta-
ble 4 are the statistics of the SAE trained on EN,
ZH and MIX dataset on Qwen1.5-1.8B.

C Low-resource language in Intrinsic
Multilingualism

Apart from the high-resource languages in Qwen-
1.5, we also selected a low-resource language to
investigate how Transferred Multilingualism is
demonstrated in Qwen and whether our previous
conclusions still hold.

The results are shown in Figure 16. First, we
analyze how ZH and EN features represent ARA
features. When the input is Arabic, EN and MIX
SAE achieve excellent reconstruction performance
across all layers, while ZH SAE performs compar-
atively worse, indicating that Transferred Multilin-
gualism exists and is transferred by EN in Qwen.



Layer L0 Explained Variance CE Score CE Loss
0 19.37 92.5% 1.0 3.08
1 26.36 89.41% 0.99 3.09
2 30.11 86.92% 0.99 3.12
3 43.24 82.57% 0.99 3.16
4 60.73 79.33% 0.98 3.18
5 77.0 76.48% 0.99 3.18
6 86.32 79.25% 0.99 3.19
7 90.23 75.71% 0.98 3.21
8 106.78 77.55% 0.98 3.24
9 118.01 71.48% 0.97 3.29

10 122.23 75.69% 0.98 3.32
11 121.99 69.5% 0.97 3.33
12 117.86 75.07% 0.97 3.35
13 118.79 66.79% 0.97 3.4
14 111.81 66.97% 0.97 3.41
15 107.97 69.56% 0.97 3.42
16 104.97 71.35% 0.96 3.44
17 101.75 70.88% 0.96 3.48
18 101.59 72.04% 0.95 3.54
19 101.55 71.22% 0.93 3.55
20 103.46 71.46% 0.92 3.62
21 107.43 69.19% 0.94 3.76
22 108.93 65.97% 0.89 4.02
23 110.77 73.01% 0.87 4.16

Table 3: ZH SAE training statistics on Qwen1.5-1.8B

Layer L0 Explained Variance CE Score CE Loss
0 38.07 89.85% 0.99 3.01
1 37.46 87.91% 0.99 3.02
2 41.55 84.27% 0.99 3.06
3 53.28 80.14% 0.98 3.11
4 73.26 77.14% 0.97 3.14
5 91.17 74.45% 0.98 3.12
6 98.97 83.1% 0.98 3.14
7 97.58 82.39% 0.98 3.15
8 112.89 79.26% 0.97 3.18
9 125.23 75.31% 0.97 3.23

10 129.91 68.2% 0.98 3.26
11 129.93 72.95% 0.97 3.27
12 127.76 71.31% 0.97 3.28
13 126.52 67.35% 0.97 3.31
14 118.95 68.27% 0.97 3.33
15 114.94 68.37% 0.96 3.33
16 111.64 69.83% 0.96 3.36
17 107.06 69.87% 0.95 3.4
18 104.53 70.31% 0.95 3.46
19 104.85 70.56% 0.93 3.51
20 103.29 70.5% 0.93 3.59
21 106.33 68.41% 0.94 3.7
22 99.0 66.87% 0.9 4.02
23 103.69 76.94% 0.84 4.37

Table 4: MIX SAE training statistics on Qwen1.5-1.8B

Next, we analyze how ARA SAE performs in
reconstructing ZH or EN. The overall CE score is
very low, indicating that features related to Arabic
don’t contain much information about ZH and EN.
However, the reconstruction result is better in the
middle layers, meaning features are more aligned
with ZH and EN features. This phenomenon aligns
with our Transferred Multilingualism model, where
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Figure 16: Qwen1.5’s SAE substitution result.
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Figure 17: Full result of microscopic analysis after SAE
substitution in different layers

in the middle layers, ARA features will be closer
to EN features for processing, resulting in better
reconstruction performance compared to early and
final layers.

D Micro Analysis

Figure 17 shows the final layer’s activation result
comparison between original activation and acti-
vation after SAE substitution, we can see a clear
divisible result when SAE substitution is applied
in the middle layers.



E Cross SAE Analysis Method

Previous research using SAEs (Ge et al., 2024c,b)
mostly focuses on a single SAE. We explore us-
ing multiple SAEs from one model to study the
model’s capabilities in different aspects. We will
formulate our method, hoping it can provide in-
sights for future research.

E.1 Input Data Choice
First, we need to decide the data used to induce
SAEs from the model. The data should be related
to a certain facet of the model. For studying In-
trinsic Multilingualism, we choose high-resource
language datasets. Additionally, we must ensure
the datasets do not overlap to maintain feature pu-
rity. The training method is detailed in B.

E.2 Feature Comparison
First, we directly analyze the decoders of ZH and
EN SAEs since they include the key features for
the two languages. We calculate the Pearson corre-
lation between the rows of the two decoder matri-
ces. The resulting correlation matrix will have the
shape of (ZH-feature-number, EN-feature-number).
Then, we take the argmax on either dimension to
discover the ’match’ between the two SAEs’ fea-
tures. However, the results do not reveal anything
meaningful; similarity across all layers is consis-
tently low.

This feature analysis has a pivotal premise: the
data used to induce SAEs should be of similar for-
mat. In our setting, Chinese and English inputs
may take on totally different mechanisms, leading
to intrinsic differences in their features. We tested
the similarity between 10 translative pairs of the
same word in ZH and EN SAEs. The average sim-
ilarity is only 0.52, indicating this experimental
setting isn’t suitable.
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